Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 21
1.
Zhongguo Zhong Yao Za Zhi ; 49(4): 932-941, 2024 Feb.
Article Zh | MEDLINE | ID: mdl-38621900

This study explored the biosynthesis of bufadienolides(BDs) in Bufo bufo gargarizans to solve the dilemma of the decreasing resources of B. bufo gargarizans and provide a theoretical basis for the sustainable utilization of the resources. Ultra-high performance liquid chromatography-Orbitrap-mass spectrometry(UHPLC-Orbitrap-MS) was employed to detect the synthesis sites of BDs in B. bufo gargarizans, and the results were verified by desorption electrospray ionization-mass spectrometry imaging(DESI-MSI) and homogenate incubation experiments. BDs in B. bufo gargarizans had the highest content in the liver and the highest concentration in the gallbladder, in addition to the parotid gland and skin, which suggested that the liver could synthesize BDs. The results of DESI-MSI also showed that BDs were mainly enriched in the liver rather than the immature parotid gland. The incubation experiment of liver homogenates demonstrated the liver of B. bufo gargarizans had the ability to synthesize BDs. This study showed that the liver was a major organ for the synthesis of BDs in B. bufo gargarizans during metamorphosis, development, and growth, which provided strong theoretical support for the biosynthesis of BDs and the sustainable utilization of B. bufo gargarizans resources.


Bufanolides , Animals , Bufo bufo , Tissue Distribution , Bufonidae , Spectrometry, Mass, Electrospray Ionization
2.
Phytomedicine ; 126: 155222, 2024 Apr.
Article En | MEDLINE | ID: mdl-38382279

BACKGROUND: Diabetic nephropathy (DN) was one of the most popular and most significant microvascular complications of diabetes mellitus. Qingxin Lianzi Yin Decoction (QXLZY) was a traditional Chinese classical formula, suitable for chronic urinary system diseases. QXLZY had good clinical efficacy in early DN, but the underlying molecular mechanism remained unrevealed. PURPOSE: This study aimed to establish the content determination method of QXLZY index components and explore the mechanism of QXLZY on DN by network pharmacology and metabolomics studies. METHODS: Firstly, the content determination methods of QXLZY were established with calycosin-7-O-ß-d-glucoside, acteoside, baicalin and glycyrrhizic acid as index components. Secondly, pharmacological experiments of QXLZY were evaluated using db/db mice. UHPLC-LTQ-Orbitrap MS was used to carry out untargeted urine metabolomics, serum metabolomics, and kidney metabolomics studies. Thirdly, employing network pharmacology, key components and targets were analyzed. Finally, targeted metabolomics studies were performed on the endogenous constituents in biological samples for validation based on untargeted metabolomics results. RESULTS: A method for the simultaneous determination of multiple index components in QXLZY was established, which passed the comprehensive methodological verification. It was simple, feasible, and scientific. The QXLZY treatment alleviated kidney injury of db/db mice, included the degree of histopathological damage and the level of urinary microalbumin/creatinine ratio. Untargeted metabolomics studies had identified metabolic dysfunction in pathways associated with amino acid metabolism in db/db mice. Treatment with QXLZY could reverse metabolite abnormalities and influence the pathways related to energy metabolism and amino acid metabolism. It had been found that pathways with a high degree were involved in signal transduction, prominently on amino acids metabolism and lipid metabolism, analyzed by network pharmacology. Disorders of amino acid metabolism did occur in db/db mice. QXLZY could revert the levels of metabolites, such as quinolinic acid, arginine, and asparagine. CONCLUSION: This study was the first time to demonstrate that QXLZY alleviated diabetes-induced pathological changes in the kidneys of db/db mice by correcting disturbances in amino acid metabolism. This work could provide a new experimental basis and theoretical guidance for the rational application of QXLZY on DN, exploring the new pharmacological effect of traditional Chinese medicine, and promoting in-depth research and development.


Diabetic Nephropathies , Drugs, Chinese Herbal , Mice , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Network Pharmacology , Metabolomics/methods , Medicine, Chinese Traditional/methods , Diabetic Nephropathies/drug therapy , Amino Acids
3.
Zhongguo Zhong Yao Za Zhi ; 48(20): 5460-5473, 2023 Oct.
Article Zh | MEDLINE | ID: mdl-38114139

This study aims to establish the ultra-performance liquid chromatography(UPLC) fingerprint and multi-indicator quantitative analysis method for Schisandrae Sphenantherae Fructus(SSF) and to screen out the potential quality markers(Q-markers) of hepatoprotection based on network pharmacology. The similarity analysis was performed using the Chinese Medicine Chromatographic Fingerprint Similarity Evaluation System, which showed that the similarity of the fingerprints of 15 samples from different regions ranged from 0.981 to 0.998. Eighteen common components were identified, from which 3 differential components were selected by cluster analysis and principal component analysis. The "component-target-pathway" network was built to predict the core components related to the hepatoprotective effects. Fourteen core components were screened by network pharmacology. They acted on the targets such as AKT1, CCND1, CYP1A1, CYP3A4, MAPK1, MAPK3, NOS2, NQO1, and PTGS2 to regulate the signaling pathways of lipid metabolism and atherosclerosis, hepatitis B, interleukin-17, and tumor necrosis factor. Considering the chemical measurability, characteristics, and validity, schisantherin A, anwulignan, and schisandrin A were identified as the Q-markers. The content of schisantherin A, anwulignan, and schisandrin A in the test samples were 0.20%-0.57%, 0.13%-0.33%, and 0.42%-0.70%, respectively. Combining the fingerprint, network pharmacology, and content determination, this study predicted that schisantherin A, anwulignan, and schisandrin A were the Q-markers for the hepatoprotective effect of SSF. The results can provide reference for improving the quality evaluation standard and exploring the hepatoprotective mechanism of SSF.


Chemical and Drug Induced Liver Injury , Drugs, Chinese Herbal , Schisandra , Schisandra/chemistry , Network Pharmacology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Chemical and Drug Induced Liver Injury/drug therapy
4.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5898-5907, 2023 Nov.
Article Zh | MEDLINE | ID: mdl-38114186

This study aims to reveal the endogenous metabolic characteristics of acteoside in the young rat model of purinomycin aminonucleoside nephropathy(PAN) by non-targeted urine metabolomics and decipher the potential mechanism of action. Biochemical indicators in the urine of rats from each group were determined by an automatic biochemical analyzer. The potential biomarkers and related core metabolic pathways were identified by ultra-high performance liquid chromatography coupled with linear ion trap-Orbitrap mass spectrometry(UHPLC-LTQ-Orbitrap MS) combined with principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA). MetaboAnalyst 5.0 was used to establish the receiver operating characteristic(ROC) curve for evaluating the clinical diagnostic performance of core metabolites. The results showed that acteoside significantly decreased urinary protein-to-creatinine ratio in PAN young rats. A total of 17 differential metabolites were screened out by non-targeted urine metabolomics in PAN young rats and they were involved in phenylalanine metabolism and phenylalanine, tyrosine and tryptophan biosynthesis. Thirtten differential metabolites were screened by acteoside intervention in PAN young rats, and they were involved in phenylalanine metabolism and arginine and proline metabolism. Among them, leucylproline and acetophenone were the differential metabolites that were significantly recovered after acteoside treatment. These pathways suggest that acteoside treats PAN in young rats by regulating amino acid metabolism. The area under the curve of two core biomarkers, leucylproline and acetophenone, were both greater than 0.9. In summary, acteoside may restore amino acid metabolism by regulating endogenous differential metabolites in PAN young rats, which will help to clarify the mechanism of acteoside in treating chronic glomerulonephritis in children. The characteristic biomarkers screened out have a high diagnostic value for evaluating the treatment of chronic glomerulonephritis in children with acteoside.


Glomerulonephritis , Puromycin Aminonucleoside , Humans , Child , Rats , Animals , Metabolomics/methods , Biomarkers/urine , Chromatography, High Pressure Liquid/methods , Acetophenones , Phenylalanine , Amino Acids
5.
Zhongguo Zhong Yao Za Zhi ; 48(22): 6066-6074, 2023 Nov.
Article Zh | MEDLINE | ID: mdl-38114213

This study comprehensively analyzed the active components of Sanhan Huashi Formula using qualitative and quantitative mass spectrometry techniques, laying the foundation for understanding its pharmacological substance basis. UHPLC-LTQ-Orbitrap-MS and GC-MS technologies were used to analyze and identify the volatile and non-volatile components in Sanhan Huashi Formula. UHPLC-QQQ-MS/MS technology was used to simultaneously determine the content of 27 major active components in the formula. The results showed that 308 major chemical components were identified in Sanhan Huashi Formula, among which 60 compounds were identified by comparing with reference standards, mainly including alkaloids, flavonoids, coumarins, triterpenoid saponins, amino acids, and nucleosides. GC-MS technology preliminarily identified 52 volatile compounds, with γ-eudesmol and ß-eudesmol as the main components. The quantitative results demonstrated good linearity(r>0.99) for the 27 active components, indicating the stability, simplicity, and reliability of the established method. Among them, amygdalin, nodakenin, arecoline, ephedrine, and pseudoephedrine had relatively high content and were presumably the main pharmacologically active substances. In conclusion, this study systematically and comprehensively characterized the major chemical components and patterns in Sanhan Huashi Formula, providing a basis for understanding its pharmacological mechanisms and clinical applications.


Drugs, Chinese Herbal , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Gas Chromatography-Mass Spectrometry , Reproducibility of Results , Drugs, Chinese Herbal/chemistry
6.
Zhongguo Zhong Yao Za Zhi ; 48(4): 1124-1131, 2023 Feb.
Article Zh | MEDLINE | ID: mdl-36872283

A randomized, double-blind, placebo-controlled, multi-center phase Ⅱ clinical trial design was used in this study to recruit subjects who were in line with the syndrome of excess heat and fire toxin, and were diagnosed as recurrent oral ulcers, gingivitis, and acute pharyngitis. A total of 240 cases were included and randomly divided into a placebo group and a Huanglian Jiedu Pills group. The clinical efficacy of Huanglian Jiedu Pills in treating the syndrome of excess heat and fire toxin was evaluated by using the traditional Chinese medicine(TCM) syndrome scale. Enzyme-linked immunosorbent assay(ELISA) was used to determine and evaluate the levels of adenosine triphosphate(ATP), 4-hydroxynonenal(4-HNE), and adrenocorticotropic hormone(ACTH) in plasma of the two groups before and after administration and to predict their application value as clinical biomarkers. The results showed that the disappearance rate of main symptoms in the Huanglian Jiedu Pills group was 69.17%, and that in the placebo group was 50.83%. The comparison between the Huanglian Jiedu Pills group and the placebo group showed that 4-HNE before and after administration was statistically significant(P<0.05). The content of 4-HNE in the Huanglian Jiedu Pills group decreased significantly after administration(P<0.05), but that in the placebo group had no statistical significance and showed an upward trend. After administration, the content of ATP in both Huanglian Jiedu Pills group and placebo group decreased significantly(P<0.05), indicating that the energy metabolism disorder was significantly improved after administration of Huanglian Jiedu Pills and the body's self-healing ability also alleviated the increase in ATP level caused by the syndrome of excess heat and fire toxin to a certain extent. ACTH in both Huanglian Jiedu Pills group and placebo group decreased significantly after administration(P<0.05). It is concluded that Huanglian Jiedu Pills has a significant clinical effect, and can significantly improve the abnormal levels of ATP and 4-HNE in plasma caused by the syndrome of excess heat and fire toxin, which are speculated to be the effective clinical biomarkers for Huanglian Jiedu Pills to treat the syndrome of excess heat and fire toxin.


Adrenocorticotropic Hormone , Hot Temperature , Humans , Medicine, Chinese Traditional , Adenosine Triphosphate
7.
Zhongguo Zhong Yao Za Zhi ; 47(8): 1995-2007, 2022 Apr.
Article Zh | MEDLINE | ID: mdl-35531714

Quality evaluation of Chinese medicinal decoction pieces is vital for the development of the downstream industries, and is an important channel for implementing the strategy of "higher quality, higher price, and priority for the high quality" for traditional Chinese medicine. At the moment, the quality of Chinese medicinal decoction pieces is mainly evaluated based on chemical component examination. Considering the weak preliminary research foundation and poor research conditions, traditional experience-based evaluation is undervalued in the quality rating of Chinese medicinal decoction pieces. However, traditional experience is a summary of the quality of Chinese medicinal materials based on clinical experience, which thus can be a potential basis for the quality evaluation of the decoction pieces. It is a challenge in the evaluation of Chinese medicinal decoction pieces to objectify the traditional experience-based evaluation from multiple aspects such as chemistry, effect, and characterization via modern techniques. Therefore, this study developed the "experience-ingredients-activity-electronic sensing" evaluation system for Chinese medicinal decoction pieces on the basis of experience-based assessment, chemical ingredients that can truly reflect the traditional experience, biological effect assessment, and electronic sensory evaluation, which is expected to quantify the traditional experience of quality evaluation of Chinese medicinal decoction pieces via chemistry, biology, and sensory simulation. The evaluation system can serve as a reference for clinical experience-based quality evaluation of Chinese medicinal decoction pieces.


Drugs, Chinese Herbal , China , Electronics , Medicine, Chinese Traditional , Restraint, Physical
8.
Zhongguo Zhong Yao Za Zhi ; 47(24): 6655-6662, 2022 Dec.
Article Zh | MEDLINE | ID: mdl-36604915

To establish a method for the simultaneous determination of ellagic acid, quercetin, gallic acid, kaempferol, myricetin, tiliroside, salidroside, isoquercetin, chlorogenic acid, and quinic acid in the leaves, flowers, fruits, and roots of Loropetalum chinensis by ultra-performance liquid chromatography-tandem mass spectrometry, and provide references for the development and utilization of L. chinensis resources. The analysis was performed on the chromatographic column ACQUITY UPLC HSS T3(2.1 mm×100 mm, 1.8 µm) with a gradient mobile phase of acetonitrile-0.2% formic solution at the flow rate of 0.3 mL·min~(-1). Column temperature was 30 ℃ and injection volume was 2 µL. Multiple reactive ion monitoring mode(MRM) was used in the negative ion ionization mode of electrospray ion source. The 10 active components had a good linear relationship, and the established method was stable, simple, and accurate. The 10 active components existed in different parts of L. chinensis, with significant different content. The main components in different parts of L. chinensis were polyphenols, with the highest content, followed by flavonoids. The content of 10 active components was generally high in flowers. Among them, the content of quinic acid was the highest, reaching 22.539 1 mg·g~(-1). This study elucidates the differences of active components in the same part and the different parts of L. chinensis, thereby providing basis for the research on the pharmacodynamic substances of L. chinensis and references for the comprehensive development and utilization of L. chinensis resources.


Drugs, Chinese Herbal , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Quinic Acid , Chromatography, Liquid , Drugs, Chinese Herbal/chemistry
9.
Zhongguo Zhong Yao Za Zhi ; 46(18): 4774-4781, 2021 Sep.
Article Zh | MEDLINE | ID: mdl-34581088

Indolealkylamines(IAAs) are the main hydrophilic substances in toad skin, mainly including free N-methyl-5-hydroxytryptamine, bufotenine, bufotenidine, dehydrobufotenine, and binding bufothionine. In this study, the LPS-activated neutrophils were used to investigate the structure-activity relationship and anti-inflammatory mechanism of the above-mentioned five monomers from the toad skin in vitro. The neutrophils were divided into the control group, model group(1 µg·mL~(-1) LPS), positive drug group(100 µg·mL~(-1) indometacin), as well as the low-(50 µg·mL~(-1)), medium-(100 µg·mL~(-1)) and high-dose(200 µg·mL~(-1)) free N-methyl-5-hydroxytryptamine, bufotenine, bufotenidine, dehydrobufotenine, and binding bufothionine groups. The levels of IL-6, TNF-α and IL-1ß in the neutrophil supernatant of each group was measured by enzyme-linked immunosorbent assay(ELISA) after LPS stimulation, followed by the detection of apoptosis in each group after Annexin V/PI staining. The protein expression levels of caspase-3, Bax, Bcl-2, beclin1, LC3-I, and LC3-Ⅱ were assayed by Western blot. The results showed that IAAs reduced the excessive secretion of inflammatory cytokines caused by LPS compared with the model group. Besides, the activity of each free IAAs(N-methyl-5-hydroxytryptamine, bufotenine, bufotenidine and dehydrobufotenine), especially bufotenine, was stronger than that of the binding bufothionine. As revealed by Annexin V/PI staining, LPS delayed the early apoptosis of neutrophils compared with the control group, while bufotenine promoted the apoptosis of neutrophils in a dose-dependent manner, which might be related to the elevated expression of apoptosis-related protein Bax/Bcl-2. In addition, LPS activated the autophagy pathways in neutrophils. This study confirmed the efficacy of IAAs in reducing the secretion of inflammatory cytokines in neutrophils induced by LPS for the first time. For instance, bufotenine exerts the anti-inflammatory effect possibly by inducing the apoptosis of neutrophils.


Lipopolysaccharides , Neutrophils , Animals , Anti-Inflammatory Agents/pharmacology , Apoptosis , Bufonidae , Lipopolysaccharides/toxicity , Skin
10.
J Ethnopharmacol ; 272: 113917, 2021 May 23.
Article En | MEDLINE | ID: mdl-33609729

ETHNOPHARMACOLOGICAL RELEVANCE: Qingxin Lianzi Yin Decoction (QXLZY), a Chinese classical formula, has been widely used in the treatment of various chronic kidney diseases over 1,000 years. However, the current studies on QXLZY were mostly focused on its clinical efficacy, lacking systematic material basis research on constituents. AIM OF THE STUDY: This work aims to elucidate and quantify the chemical constituents, clarify the blood-absorbed components and excretion pathways, predict major bioactive constituents and discover potential therapeutic targets. MATERIALS AND METHODS: UHPLC-LTQ-Orbitrap HRMS was employed to clarify the chemical constituents and metabolites of QXLZY. The extraction of diagnostic ion and neutral loss fragment was aimed for searching specific type of constituents. The plasma, urine, bile and feces samples of rats after oral administration of QXLZY were systematically studied. UHPLC-QQQ-MS/MS was employed to simultaneously detect different types of constitutes. Based on the analysis of ingredients in vivo, the bioactive constituents and potential therapeutic targets in the treatment of diabetic nephropathy (DN) was investigated by using network pharmacological analysis. RESULTS: Totally, 220 compounds were identified or tentatively characterized by UHPLC-LTQ-Orbitrap HRMS. Among them, 59 compounds were confirmed by reference standards. Meanwhile, 21 representative components were simultaneously determined within 15 min by UHPLC-QQQ-MS/MS. 123 components (74 prototypes as well as 49 metabolites) were identified or tentatively characterized. By using network pharmacological analysis, baicalein, liquiritigenin, succinic acid, formononetin, wogonin might be the major effective constituents in QXLZY during the treatment of DN. CONCLUSIONS: Flavonoids, saponins and organic acids were the major chemical ingredients of QXLZY. Flavonoids were the main components absorbed into blood, followed by organic acids. Phase II conjugation reaction was the major metabolic type. The pathways that QXLZY in the treatment of DN were probably related to glucose and lipid metabolism, oxidative stress and inflammation.


Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Phytochemicals/chemistry , Phytochemicals/pharmacology , Acids/analysis , Alkaloids/analysis , Animals , Chromatography, High Pressure Liquid , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/analysis , Flavonoids/analysis , Male , Metabolome , Phytochemicals/administration & dosage , Phytochemicals/analysis , Protein Interaction Maps , Rats, Sprague-Dawley , Reference Standards , Reproducibility of Results , Saponins/analysis , Tandem Mass Spectrometry
11.
J Ethnopharmacol ; 260: 112943, 2020 Oct 05.
Article En | MEDLINE | ID: mdl-32422359

ETHNOPHARMACOLOGICAL RELEVANCE: Arenobufagin (ArBu) is an important anti-tumor ingredient of Chan'su which has long been used as traditional Chinese medicine in clinic for tumor therapy in China. AIM OF THE STUDY: The purpose of our study is to investigate the lipid homeostasis regulation effects of ArBu on zebrafish model of liver cancer and hepatoma cells, and to provide a reference for further clarifying its active mechanisms. MATERIALS AND METHODS: The zebrafish xenograft model was established by injecting HepG2 cells stained with CM-Dil red fluorescent dye. Both the xenograft model and HepG2 cells were used to evaluate the anti-hepatoma activity of ArBu. High performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was the main method to study lipidomics, proteomics and the semiquantification of endogenous metabolites. Bioinformatics was used as an assistant tool to further explore the antitumor mechanism of ArBu. RESULTS: The lipidomics analysis revealed that ArBu caused differential lipids changes in a dose-dependent manner, including PCs, PEs, TGs, SMs, DGs, Cer and PA. PCs, PEs, SMs and TGs were markedly altered in both two models. The influence of glycerophospholipid metabolism was the major and commonly affected pathway. Notably, DGs and Cer were significantly changed only in HepG2 cells. Furthermore, the proteomics research in HepG2 cells fished the target proteins related to lipid homeostasis abnormalities and tumor suppression. ArBu reduced the expression of 65 differential proteins associated with the lipid metabolism, apoptosis and autophagy, such as LCLAT1, STAT3, TSPO and RPS27. Meanwhile, 7 amino acids of 29 determined metabolites were significantly changed, including tyrosine, glutamate, glutamine, leucine, threonine, arginine and isoleucine. CONCLUSION: ArBu has a significant anti-hepatoma effect in vitro and a therapeutic effect on zebrafish xenograft model. It regulated the lipid homeostasis. Activated SM synthase and arginine deiminase, inhibited sphingomyelinase, amino acid supply and JAK-STAT3 signaling pathway, and the affected glycerophospholipid metabolism might explain these results.


Antineoplastic Agents/pharmacology , Bufanolides/pharmacology , Carcinoma, Hepatocellular/drug therapy , Lipid Metabolism/drug effects , Lipidomics , Liver Neoplasms/drug therapy , Proteomics , Animals , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , Autophagy/drug effects , Autophagy-Related Proteins/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Gene Expression Regulation, Neoplastic , Hep G2 Cells , Humans , Lipid Metabolism/genetics , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Protein Interaction Maps , Signal Transduction , Xenograft Model Antitumor Assays , Zebrafish
12.
Molecules ; 24(22)2019 Nov 18.
Article En | MEDLINE | ID: mdl-31752141

The tea-like beverage Stevia rebaudiana Bertoni (Stevia) is popular in China because it reduces blood glucose and has a sweet taste. In this work, a comprehensive quality assessment of Stevia led to the discovery of five phenylethanoid glycosides, namely steviophethanoside (1), cuchiloside (2), salidroside (3), icariside D (4), and tyrosol (5). Of them, compound 1 is a novel compound. Mass spectrometry and NMR spectroscopy were employed to confirm the absolute configuration. A hydrolytic step with 4 N TFA at 95 °C for 4 h was used to confirm the monosaccharides. In addition, Discovery Studio 4.0 was used to predict the ADME and toxicity activity of compound 1. The results suggested that compound 1 was biocompatible and had poor toxicity, which was verified by rat INS-1 islet ß cells through an MTT assay. Meanwhile, a significant stimulatory effect on INS-1 cells was observed, which indicated a hypoglycemic effect of compound 1. This is the first report that describes a natural, novel, and hypoglycemic phenylethanoid glycoside in Stevia.


Glycosides/pharmacology , Insulin Secretion/drug effects , Insulin-Secreting Cells/drug effects , Plant Extracts/pharmacology , Stevia/chemistry , Animals , Cells, Cultured , China , Glycosides/chemistry , Glycosides/isolation & purification , Insulin-Secreting Cells/metabolism , Magnetic Resonance Spectroscopy , Mass Spectrometry , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Rats
13.
Eur J Pharmacol ; 864: 172719, 2019 Dec 01.
Article En | MEDLINE | ID: mdl-31586634

Gambogic acid (GA) is a potential anti-cancer compound that is extracted from the resin of Garciania hanburyi. The present study was designed to evaluate the anti-metastatic effect of GA on melanoma cell lines in vitro and to explore the underlying mechanism. The anti-proliferative activity of GA on melanoma cells was assessed by CCK-8 assay. The Wound-healing, transwell, adhesion, and tube formation assays were performed to examine the inhibition of GA on the cell's migration, invasion, adhesion, and angiogenesis capacities, respectively. Enzymatic activity of MMP-2 and MMP-9 were detected by gelatin zymography assay. Protein expressions regulated by GA treatment were tested by Western blot assay. The present results showed that GA significantly inhibited the proliferation of highly metastatic melanoma A375, B16-F10 cells and human umbilical vein endothelial cells (HUVECs) in time- and doses-dependent manners. Furthermore, GA significantly inhibited the migratory, invasive and adhesive properties of A375 and B16-F10 cells, and tube-forming potential of HUVECs at sub-IC50 concentrations, where no significant cytotoxicity was observed. Mechanistically, GA treatment suppressed the EMT and angiogenesis processes and reduced the enzymatic activity of MMP-2 and MMP-9. Moreover, abnormal PI3K/Akt and ERK signaling pathways in A375 and B16-F10 cells and HUVECs were notably suppressed by GA treatment. Collectively, our results suggest that GA exerts anti-metastasis activity in melanoma cells by suppressing the EMT and angiogenesis through the PI3K/Akt and ERK signaling pathways, and might be used as a phytomedicine against metastatic melanoma.


Antineoplastic Agents/pharmacology , Extracellular Signal-Regulated MAP Kinases/metabolism , Melanoma/pathology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Skin Neoplasms/pathology , Xanthones/pharmacology , Animals , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Melanoma/blood supply , Mice , Neoplasm Invasiveness , Neoplasm Metastasis , Neovascularization, Pathologic/drug therapy , Skin Neoplasms/blood supply , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Xanthones/therapeutic use , Melanoma, Cutaneous Malignant
14.
Zhongguo Zhong Yao Za Zhi ; 44(1): 158-166, 2019 Jan.
Article Zh | MEDLINE | ID: mdl-30868827

In order to find the endogenous potential biomarkers of in vitro hepatic injury caused by NCTD-Na and elucidate the mechanism of hepatic injury of NCTD-Na,ultra-high performance liquid chromatography coupled quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS) was used for lipidomics detection.Multivariate statistical analysis was used to study the endogenous lipid metabolic changes of human normal liver cells LO2 injury after the treatment with sodium norcantharidate(NCTD-Na).The results showed that the half maximal inhibitory concentration(IC50) of NCTD-Na was 0.034 mmol·L-1.A total of 280 differential metabolites were found between the control group and the low-dose group,with VIP > 2.0 and P<0.05.At the same time,a total of 273 differential metabolites were found between the control group and the high-dose group,with VIP > 2.0 and P<0.05.Cell metabolite profiles showed clear separation among control group,the low-dose group and the high-dose group,and 111 differential metabolites were found,with VIP > 2.0,P<0.05,RSD<30% and in a dose-dependent manner.It was found that most of the above differential metabolites were lipid metabolites after the analysis of simple preparnation methods and database search.A total of 32 potential biomarkers were identified,including 3 phosphatidylcholine(PC),5 lysophosphatidylcholine(Lyso PC),3 ceramide(Cer),1 sphingomyelin(SM),1 phosphatidylethanolamine(PE),10 lysophosphatidylethanolamine(LysoPE),4 diacylglycerol(DG),1 Phosphatidic acid(PA),1 lysophosphatidic acid(Lyso PA),1 phosphatidyl glycerol(PG),1 fatty acid hydroxy fatty acid(FAHFA) and 1 phosphatidylserine(PS).The changes of PCs,Cers,SM,PE and DGs were closely related liver protection,DNA methylation and self-repair in hepatocytes,apoptosis,methylation and detoxification of carcinogens,as well as lipid peroxides production process.Also,they had impact on the proliferation of hepatocytes,differentiation and gene transcription disorders.Cells stimulated by NCTD-Na could promote the production of PA as well as the synthesis and catabolism of FAHFA in a variety of ways.The levels of Lyso PCs,LysoPEs and Lyso PA were correlated with PCs,PE and PA;PE and PS might have valgus during apoptosis,triggering phagocytosis.


Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Hepatocytes/drug effects , Lipid Metabolism , Cells, Cultured , Hepatocytes/metabolism , Humans , Lipids/analysis , Tandem Mass Spectrometry
15.
Oncol Lett ; 15(1): 1362-1372, 2018 Jan.
Article En | MEDLINE | ID: mdl-29399187

Epithelial-mesenchymal transition (EMT) has been reported to play pivotal roles in tumor invasion and metastasis. Inhibition of EMT may exert beneficial effects in regulating metastasis. Oridonin (ORI), an active diterpenoid compound isolated from Rabdosia rubescens, was found to be a potent anti-metastatic agent. However, the possible involvement of ORI in the EMT in malignant melanoma is unclear. The present study found that ORI inhibited cell migration, invasion, and adhesion in A375 and B16-F10 melanoma cells. The transforming growth factor-ß1 (TGF-ß1)-induced EMT was also inhibited in ORI-treated cells, as reflected in the upregulation of E-cadherin, and downregulation of vimentin and Snail. Similar results were observed in A375 and B16-F10 melanoma cells treated with ORI. Furthermore, pre-treatment with ORI blocked the TGF-ß1-induced phosphoinositide 3-kinase (PI3K)/AKT serine/threonine kinase (Akt)/glycogen synthase kinase (GSK)-3ß signaling pathway activation. These effects mimicked PI3 kinase inhibitor LY294002 treatment. ORI interfered with the PI3K/Akt/GSK-3ß pathway, and reversed TGF-ß1-induced EMT, which suppressed the invasion and metastasis of melanoma cells. Taken together, the present study demonstrated that ORI inhibits melanoma cells migration, invasion, and adhesion and TGF-ß1-induced EMT through the PI3K/Akt/GSK-3ß signaling pathway. These findings suggest that ORI is a promising anti-metastasis agent for melanoma.

16.
J Biosci Bioeng ; 123(4): 460-465, 2017 Apr.
Article En | MEDLINE | ID: mdl-28043775

As a traditional fermented alcoholic beverage of China, Chinese rice wine (CRW) had a long history of more than 5000 years. Rice soaking process was the most crucial step during CRW brewing process, because rice soaking quality directly determined the quality of CRW. However, rice soaking water would cause the eutrophication of water bodies and waste of water. The longer time of rice soaking, the higher the content of biogenic amine, and it would have a huge impact on human health. An innovation brewing technology was carried out to exclude the rice soaking process and the Lactobacillus was added to make up for the total acid. Compared to the traditional brewing technology, the new technology saved water resources and reduced environmental pollution. The concentration of biogenic amine was also decreased by 27.16%, which improving the security of the CRW. The esters increased led to more soft-tasted CRW and less aging time; the quality of CRW would be improved with less alcohol.


Acids/chemistry , Bioreactors , Fermentation , Oryza/chemistry , Water/chemistry , Wine/analysis , Biogenic Amines/analysis , China , Environmental Pollution/prevention & control , Esters/analysis , Ethanol/analysis , Hydrogen-Ion Concentration , Lactobacillus/growth & development , Lactobacillus/metabolism , Oryza/microbiology , Steam , Time Factors , Yeasts
17.
Zhongguo Zhong Yao Za Zhi ; 41(20): 3767-3772, 2016 Oct.
Article Zh | MEDLINE | ID: mdl-28929654

Fifteen compounds were isolated from the toad skin by a combination of various chromatographic methods including macroporous resin, silica gel, ODS and semi-preparative HPLC. Their structures were identified as 4,5-dimethyl-1,3,4,5-tetrahydropyrrolo[4,3,2-de]quinolin-6-ol(1), serotonin(2), N-methyl serotonin(3), O-methyl bufotenine(4), 1,2,3,4-tetrahydro-6-hydroxy-ß-carboline(5), O-methylserotonin(6), glycinebetaine(7), caffeine(8), bufotenine(9), shepherdine(10), tryptophan(11), (5-hydroxy-1H-indol-3-yl)acetic acid(12), 5-hydroxy tryptophol(13), 2-methyl-6-hydroxy-1,2,3,4-tetrahydro-ß-carboline(14), bufothionine(15). Among them, compound 1 was a new compound,compound 5 was a new natural product. Compounds 4-8 and 10-14 were separated from toad skin for the first time.


Bufonidae , Skin/chemistry , Animals , Chromatography, High Pressure Liquid
18.
Rapid Commun Mass Spectrom ; 29(21): 2045-56, 2015 Nov 15.
Article En | MEDLINE | ID: mdl-26443405

RATIONALE: Limonoids, characterized by a triterpenoid skeleton with a furan ring, are unique secondary metabolites widely distributed in the families of Rutaceae, particularly in Citrus species and Meliaceae. Studies on health benefits have demonstrated that limonoids have a range of biological activities. Dietary intake of citrus limonoids may provide a protective effect against the onset of various cancers and other xenobiotic related diseases. However, few studies about the metabolic profiles of limonoids have been carried out. METHODS: The objectives of this study were to investigate the metabolic profiles of four limonoids (limonin, obacunone, nominin and gedunin) in human liver microsomes (HLMs) using ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC/HRMS) and to identify the cytochrome P450 (CYP) enzymes involved in the formation of their metabolites by recombinant human CYP enzymes. RESULTS: Based on the accurate HR-MS/MS spectra and the proposed MS/MS fragmentation pathways, four metabolites of limonin (M1-1, M1-2, M1-3 and M1-4), eight metabolites ofobacunone (M2-1, M2-2, M2-3, M2-4, M2-5, M2-6, M2-7 and M2-8), six metabolites of nominin (M3-1, M3-2, M3-3, M3-4, M3-5 and M3-6) and three metabolites of gedunin (M4-1, M4-2 and M4-3) in HLMs were tentatively identified and the involved CYPs were investigated. CONCLUSIONS: The results demonstrated that reduction at C-7 and C-16, hydroxylation and reaction of glycine with reduction limonoids were the major metabolic pathways of limonoids in HLMs. Among them, glycination with reduction was the unique metabolic process of limonoids observed for the first time. CYP2D6 and CYP3A4 played an important role in the isomerization and glycination of limonoids in HLMs, whereas other CYP isoforms were considerably less active. The results might help to understand the metabolic process of limonoids in vitro such as the unidentified metabolites of limonin glucoside observed in the medium of microbes and the biotransformation of limonin in juices. Moreover, it would be beneficial for us to further study the pharmacokinetic behavior of limonoids in vivo systematically.


Chromatography, High Pressure Liquid/methods , Limonins/chemistry , Limonins/metabolism , Mass Spectrometry/methods , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Humans , Molecular Structure
19.
Yao Xue Xue Bao ; 47(9): 1159-63, 2012 Sep.
Article Zh | MEDLINE | ID: mdl-23227545

Influenza virus RNA-dependent RNA polymerase (RdRP) is essential for replication and expression of influenza virus genome. Viral genomic sequences encoding RdRP are highly conservative, thus making it a potential anti-influenza drug target. A cell-based influenza RdRP inhibitor screening assay was established by a luciferase reporter system to analyze the activity of RdRP. Specificity study and statistic analysis showed that the screening assay is sensitive and reproducible.


Antiviral Agents , Drug Evaluation, Preclinical/methods , Genes, Reporter , Luciferases/metabolism , RNA-Dependent RNA Polymerase/antagonists & inhibitors , RNA-Dependent RNA Polymerase/metabolism , Amantadine/pharmacology , Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology , HEK293 Cells , Humans , Alphainfluenzavirus/enzymology , Luciferases/genetics , Oseltamivir/pharmacology , Plasmids , Reproducibility of Results , Ribavirin/pharmacology , Sensitivity and Specificity , Transfection , Zanamivir/pharmacology
20.
Yao Xue Xue Bao ; 45(2): 247-52, 2010 Feb.
Article Zh | MEDLINE | ID: mdl-21351435

Strict regulation of HIV-1 PR function is critical for efficient production of mature viral particles. During viral protein expression and viral assembly, HIV-1 PR located within Gag-Pol precursor must be inactive to prevent premature cytoplasmic processing of the viral Gag and Gag-Pol precursors. Premature activation of HIV-1 precursors leads to major defects in viral assembly and production of viral particles. A cell-level premature activation of HIV-1 precursors assay using bioluminescence resonance energy transfer (BRET) was established. Three thousand compounds were screened to evaluate this assay. The results showed that the assay is sensitive, specific and stable (Z' factor is 0.905).


Anti-HIV Agents/pharmacology , HIV Protease/metabolism , HIV-1/enzymology , High-Throughput Screening Assays/methods , Protein Precursors/metabolism , Alkynes , Benzoxazines/pharmacology , Bioluminescence Resonance Energy Transfer Techniques/methods , Cyclopropanes , Fusion Proteins, gag-pol/genetics , Fusion Proteins, gag-pol/metabolism , HEK293 Cells , HIV Protease/physiology , Humans , Nitriles , Plasmids/genetics , Protein Precursors/physiology , Pyridazines/pharmacology , Pyrimidines , Transfection , Virion/growth & development , Virus Assembly , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/metabolism
...